
Throwaway
Test Automation

originalsoftware.com.

The complete guide to Exploratory Testing

Introduction

Throwaway Test Automation

originalsoftware.com

Software test automation has been available for over

a quarter of a century but the practice has a mixed

track record and often falls into disuse due to the

effort required to maintain the created scripts.

Achieving just a moderate level of automation

coverage requires considerable investment of budget

and resource. With increasing software development

complexity fighting a business and IT drive for agility,

traditional test automation has become too

cumbersome for many to contemplate or sustain.

But why is Test
Automation
so cumbersome?
Traditional test automation systems originated in a

world that moved at a much slower pace, where

waterfall developments were the only game in town

and no-one attempted to tackle fast moving,

mission-critical applications – they knew that the

technology simply couldn’t keep up.

These products all get their capabilities from

powerful scripting languages; something that sounds

good in a presentation but has become a horror in

the real world, requiring highly skilled and expensive

test automation engineers, to build and maintain the

test automation framework and assets.

Other ʻbenefits’ of a coded approach were rapidly

found to be of little practical use. The theory was that

a coded automation script could be developed in

parallel with code development.

“The biggest barrier to
test automation remains
the level of maintenance
required to sustain it.”

originalsoftware.com

The truth was somewhat different as these test tools

required knowledge of how the developers were

naming the visual components – something that was

neither consistent nor predictable.

Because of this, the code-based tools reverted to a

''record’ mode to establish the initial script, which

made them only usable once the application was

complete.

This was more practical, but now the automation

coding effort couldn’t even commence until sections

of the code were complete and stable.

It got worse. Most of each script that needed to be

coded had nothing to do with testing the application.

The engineers had to overcome many challenges

before they could even get that far – handling

unpredictable response times, retrieving displayed

data needed for validation and establishing

checkpoints to signify when the application had

completed a logical step.

But the death knell was what happened when the

application to be tested changed. Suddenly all these

laboriously created ʻassets’ were worth nothing and

would not execute until the entire process had been

repeated.

What happened next ranged from the sane to the

almost comical. The sane organisations did what

came naturally and gave up. Others were not to be

defeated and threw even more expensive resources

at the problem, some hiding the failure by outsourcing

the entire test burden – often to companies who did

most of the testing manually. All this for an initiative

which was meant to reduce the need for resources,

save time and improve quality!

Throwaway Test Automation

ORIGSOFT .COM

To put this in perspective, industry analysts state

that the high-water mark in automation success

is when 20% of an application has been

automated. This is the high-water mark, mind

you, not the average; 20% is the peak of what

you can expect after a financial investment

measured in hundreds of thousands of dollars

and an effort investment measured in many

man years.

originalsoftware.com

The Current Need for Speed

The way we work has also changed. In the last

decade, the rate of business change has risen

beyond anything we could have expected. The

availability of new technology and the strategic

advantage that it can potentially provide businesses

has fuelled this, along with the need to adapt quickly

to changing market requirements.

As the fortunes of markets change and move with a

frighteningly sudden pace, every business finds itself

needing to achieve more, with static or reduced

budgets and resources.

Agile and hybrid development is now well

established, although many waterfall still happily co-

exist. What is common to all is that today's fast-

paced business environment demands an

organisation’s development process to be flexible

and adaptable to changing needs.

Any agile model provides frequent delivery,

increased customer involvement and helps to deal

with the problem of rising complexity in systems.

“With all the benefits of a more
fluid, flexible process, come
challenges in how to assure the
quality and governance of
these ever-changing
application.”

Throwaway Test Automation

originalsoftware.com

QA teams now have to accept that requirements can

often change during and after each iteration,

depending on the feedback from the customer.

These changes in requirements are consequently

reflected in the code and the tests that QA teams

have to develop, which in turn can lead to a large

amount of rework and script maintenance.

With delivery cycles getting shorter and with security

concerns and new regulations to manage, applications

are becoming more like living things; beings that grow

and mature, morphing from new-born status to an

almost unrecognisable fully-grown adult with all the

associated trappings and documents that adults tend

to collect throughout their lives.

How on earth is outdated and cumbersome test

automation technology supposed to cope with this

level of change and complexity? It simply can’t.

Micro Focus bought HP...
nothing changed
HP in a refreshing burst of honesty now states that

unless you will run a script a minimum of seven times,

there will not be any payback from automation. That

is one heck of a statement. Any part of an application

that needs to be tested at least seven times suggests

an almost static application, not one that is subject of

active development efforts.

“How much real innovation
have we had in this [testing]
discipline that has actually
stood the test of time? I
argue that we've thrown
most of it away”

Throwaway Test Automation

ORIGSOFT .COM

So says Barry Ritholtz in an article entitled “The

world is about to change even faster”.

He’s right. Technology changes too quickly for any

one company to stay on top of it. New software is

released so regularly that it is already out of date

by the time it is launched– consider the frequency

of SAP or even Microsoft updates; keeping on top

of these pose a real headache to most IT

departments.

We’ve got to a state where traditional testing

processes and tools are too cumbersome and

development is pulling away. Testing becomes

the bottleneck. We don’t need test assets which

have cost companies thousands of dollars and

man-hours to develop. What the business needs

now is test assets that are quick and easy to

develop, that can be re-used or adapted easily,

or can be discarded without a second thought.

This sort of automation is fine for regression tests

but will not make any impact on current QA

bottlenecks. The need is for a solution that is

faster, lighter and better able to respond to

dynamic application developments.

In short, the modern business, with all its need for

speed and agility just has no place left for these

types of solutions, regardless of how much

organisations have already invested in them and

regardless of how much resource is tied up in

trying to maintain them. The need for change is

now.

originalsoftware.com

“Hav i ng t roub le keep i ng up? The pace
of i nnova t i on and d is rupt i on is

acce le ra t i ng . ”

By freeing automation
from the burden of a script based on
code, we can begin to imagine a
solution that could be used by
subject matter experts and not
limited to frustrated developers, a
solution that could adapt to changes
in the application under test

www.a l t ime te rg roup .ne t

Throwaway Test Automation

http://www.altimetergroup.net/
http://www.altimetergroup.net/

ORIGSOFT .COM

Now it would be foolish to dispose of the entire

test automation concept purely based on what

came before. We need to recalibrate our

expectations and remind ourselves of excellent

potential benefits from test automation if only the

capabilities were delivered in a form usable by all.

The ability of any automation technology to adapt

to changes in the underlying application will

always have some limitations. Is it reasonable to

expect a test script created for a legacy

mainframe application to remain valid on the

replacement responsive web architecture? Can

you expect the test scripts created for the English

version of your website to be applicable to the

newly developed Japanese version?

By freeing automation from the burden of a test

script based on code, we can begin to imagine a

solution that could be used by subject matter

experts and not limited to frustrated developers,

a solution that could adapt to changes in the

application under test, an intelligent solution that

inherently understood the application under test,

removing the need to develop logic in addition to

the validation itself.

originalsoftware.com

So why throw such
perfection away?

“Think about your own
test assets. Can you
even estimate the cost in
time and effort in building
them? How constricted
are you by that
investment?”

Throwaway Test Automation

ORIGSOFT .COM

The exciting thing is that modern automation

goes a surprisingly long way towards

addressing these needs. But do not let that

optimistic outlook hide the core issue – at

some point, the application, environment or

business will change in such a fundamental

way that the existing test assets have little or

no value.

If that loss represents an investment in

intellectual property, resource and time at a

level so large that there is no appetite to

redevelop those assets for the application

version, then automation will have failed. Thus

we arrive at the acid test – if it is deemed

easier to return to a manual test approach,

then automation has failed and deserves to be

thrown.

originalsoftware.com

Throwaway Test Automation

ORIGSOFT .COM

Test automation has failed to date simply

because we could not afford to throw it away.

Creating any form of automation takes effort and

time; when the application under test changes

and the automation ceases to work you are faced

with a stark choice – either maintain it at

additional effort and time or abandon it. If you

abandon it you are also writing off the effort and

time you invested in creating it, thus bringing the

whole concept into question.

The reality is that you have to be in a position to

throw away the automation you have created, as

sooner or later the application will change in such

a way that no amount of manual or automatic

healing can tackle.

So, by definition, the creation of the automation

must have been so fast and painless and the

investment minimal, that you can afford, both

financially and emotionally, to throw it away.

Think about your own test assets. Can you even

estimate the cost in time and effort in building

them? How constricted are you by that

investment? Can you hand on heart claim that you

don’t grimace every time you have to throw them

away?

Throwaway Test Automation

originalsoftware.com

Summary

originalsoftware.com

This guide has been brought to you by Original Software.
With the happiest customers in software testing, we've
been helping businesses meet their objectives and

deliver quality software through our range of innovative
code-free testing solutions for over 25 years.

