
The Complete Guide to
Exploratory Testing

originalsoftware.com.

The complete guide to Exploratory Testing

Exploratory Testing is a style of testing based
on the knowledge and ingenuity of testers.
There is no need for explicit scripted
instructions, which may limit the scope or
creativity.

Anybody who has worked in software for a
certain amount of time will have been asked at
one point to ʻhave a play’ with a new
application to ascertain suitability. This form of
'ad hoc' testing gave birth to exploratory testing
used by teams today. Although the process has
become a little more formalized, the critical
requirement to allow freedom and flexibility to
explore remains a central tenet of this
approach.

Understanding what the test item does, trying
new things, developing ideas for testing,
documenting, learning, and finding potential
bugs are the vital useful areas undertaken
during a session.

Exploratory testing can be done by individuals
or by teams. It provides a framework, helping a
team to evaluate software, or a specific area of
a product, in a highly creative and investigative
manner but within a limited amount of time.

The first person to coin the phrase ʻexploratory
testing’, Cem Kaner concisely described the
approach as simultaneous learning, test design
and test execution.

The importance
of Exploratory Testing

The Complete Guide to Exploratory Testing

originalsoftware.com

Exploratory testing is also used in critical

domains, and that this approach places high

demands on the person performing the testing.

Exploratory testers are successful when using

knowledge about the domain, the system under

test, and customers. Experience is a key factor

explaining the effectiveness of exploratory

testing and, as such, may not be suitable for

newer team members. However, sometimes it

can be beneficial to get someone who does not

know the development to look and get an

outside perspective.

Although part of the allure of exploratory

testing is the ability to do this without much

preparation or documentation, it is still helpful

to do some setup to ensure enhanced success.

So how is it best to manage the process of

exploratory testing, and who will do this?

As no QA, technical, or automation knowledge,

along with scripts and processes, is needed to

do exploratory testing, this can be opened to a

broader audience for evaluation. It is common to

see people from the product side (UX/UI),

development, QA, and end-users being involved.

Each person will bring their own unique

knowledge and skillset to bear on the process.

Scoping the exploratory
experience

Who can do exploratory testing?

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM
When is it best to do exploratory testing?

It is also good to use this approach when the

need to inspect software from an end user's

perspective arises. When features are added or

changed late in the software cycle, it would be

valuable time to employ exploratory testing

techniques.

This approach is best used when people must

learn about a piece of software quickly. This can

be done early on, including the prototype stage,

as there is no need for test scripts or even

requirements documentation. Often used in agile

iterations, this technique allows a team to find

issues quickly and efficiently in a rapidly

changing environment.

One of the outputs of an exploratory test session

is the groundwork for preparing more classic

test scripts; these can then be used for

regression testing during later phases.

The Complete Guide to Exploratory Testing

originalsoftware.com

What preparation is required?

Definition of the constraints of a test session is

critical to its success. Although part of the

exploratory approach's appeal is the freedom

to roam and test as the will goes, it is also

essential to set some guidelines to maximize

efficiency and ensure the correct areas are

looked at. This will mean pre-defining features,

functions, specific processes, etc. to align

expectations.

Define how much time each session participant

shall spend for the test session. This will ensure

focus on what is needed whilst still allowing a

more playful approach. Additionally, this will

ensure that the participants can plan time and

remain uninterrupted by other people whilst the

effort is ongoing.

Include a wide range of resources with different

backgrounds, knowledge and roles, examples of

this can be found in the who section above. This

should include end-users and any stakeholders for

the software, including those external to your own

organization. Sometimes it can be

beneficial to invite people to participate who

haven't been involved in the project at all to get

an outside perspective and different viewpoint.

A definition of the approach to feedback, issues

or any other type is required. What format will

be used to collate test reports, is there any need

for proof of testing for auditing or defect

reproductions? How will the information be

centralized and shared for collaboration with

other interested parties from the team?

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

A mission statement for the session is defined;

this describes the common overall purpose for

the session. It should tell the participants why

the session is done and what we hope to

achieve on an elevated level. This allows the

session to be measurable and reportable on a

larger scale.

To ensure a focused approach, a timebox is

required for the session; this will also allow the

team to synchronize and collaborate. A typical

timespan would be 45 mins to 1.5 hours; all

effort is made during this period only.

Opportunities to extend or cut by specific

amounts can be given, e.g., 30 mins.

With disparate teams spread across departments

and companies, and countries, it is less likely that

people can be brought together in one room to

commit to a conference room pilot. Therefore,

how long it takes and who is involved are

essential questions that need to be answered

before the execution phase. This technique is

significantly teachable and manageable and is

therefore suitable for a wide range of

participants both within IT and, more importantly,

within the business.

Executing
exploratory testing

What is required to execute a test?

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

What test cases can be created from

the session?

Current product behavior pros/cons

What defect reports are needed?

New requirements (UX/UI)

Risks identified and recorded

Questions (may help drive into the user

training documentation)

During the session, testers do their Exploratory

Testing, use charters, and document what they

do or find.

If necessary individual objectives, test ideas, or

agendas can be described in test charters.

Some or all charters may be needed to be

carried out to achieve the mission. These

charters should suggest what to test, how it

could be tested, and what may need to be

looked at. Resources may have different skills,

so test charters can be assigned to specific

individuals if required.

To continue improving and getting the best out

of exploratory testing, it is necessary to evaluate

what happened. After the session, the team will

have a debriefing. In the debriefing, the team

and the organizer discuss the results, find

agreement on what is a bug and what is not,

and decide about the next steps. Critical

elements for the discussion are as follows:

How is it best to evaluate a testing
session?

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

Explore the unknown to avoid the
unexpected.

With a mindset of investigating the

application under test, removing the

limitations of scripted testing, the testers are

more intellectually stimulated. This leads to a

happier team that is more willing to help and

give input into software development.

Using each person's deductive reasoning, a

different viewpoint of the software is

provided by each user; this is very useful to

get a bigger picture view of what is going on.

The feedback given then extends beyond the

standard 'bug' reports and allows inputs of all

kinds, further enhancing user buy-in to the

application.

There are considerable and multiple benefits

from taking an exploratory testing approach.

One of the main advantages is that the testing

can begin early in the development cycle as it

doesn’t need a lot of preparation or test

assets. Experiments have shown that while

scripted and exploratory testing results in

similar defect detection effectiveness (the

total number of defects found), exploratory

results in higher efficiency (the number of

defects per time unit) as no effort is spent pre-

designing the test cases.

Benefits of
exploratory testing

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

At the same time as testing, the team gains

insights into the system behaviors and outputs

through adaptation and reasoning. This allows

the process to evolve naturally within the given

mission statement guidelines and has a more

beneficial output. It works well in the system

areas that have not yet been specified or

where documentation and requirements exist.

Accelerated bug detection is also a key

consideration, especially within agile teams, as

all the main processes can be tested first in a

ʻreal world’ setting.

Disadvantages are that tests invented and

performed on the fly can't be reviewed in

advance (and by that prevent errors in code

and test cases) and that it can be difficult to

show exactly which tests have been run.

Therefore, it is important to scope the sessions

so that coverage can more accurately be

deduced.

Freestyle exploratory test ideas, when revisited,

are unlikely to be performed in precisely the

same manner, which can be an advantage if it is

crucial to find new errors; or a disadvantage if it

is more important to repeat specific details of

the earlier tests.

What are the cons of exploratory testing?

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

Key requirements for help would be:

To enable the most significant benefits to the

exploratory testing session, it would be good to

get help from an application supporting both this

style and the standard scripting style of testing.

Easy collaboration & resource management

Standardized documentation and feedback

Process review & triage capability for all

feedback types

Efficient co-ordination

Simplicity in use

Flexibility to enable different test paradigms

Centralized & easy to deploy

Exploratory testing itself is beneficial, but when

dovetailed with other testing processes, it

becomes a powerful way to understand the

application better, build better functional tests

and finally enhance the quality of the application.

Benefits of
exploratory testing
software tools

The Complete Guide to Exploratory Testing

originalsoftware.com

ORIGSOFT .COM

Conclusion

The Complete Guide to Exploratory Testing

originalsoftware.com

I f done co r rec t ly , exp l o ra to ry tes t i ng
can be a powe r fu l too l i n the sof twa re
va l ida t i on a r sena l . Simp l e to se t up , i t is
the qu i ckes t approach to tes t i ng i n the
f i r s t i ns tance , the many outputs
desc r i bed can a lso be used i n the
sof twa re deve lopmen t l i fecyc le mov i ng
fo rwa rds .

No t on ly w i l l i t ensure sof twa re qua l i ty ,
but i t i nvo lves peop l e i n a deepe r way ,
g iv i ng them t ra in ing on new produc t s a t
the same t ime as a l low i ng a fee l ing of
be ing pa r t of the so lut i on .

Ul t ima te ly th is w i l l l ead to no t on ly
happy custome r s , th rough a mo re
bus i ness cen t r i c approach to so lut i ons ,
but happ i e r tes te r s tha t ge t i nvo lved as
they ge t a p rofound buy i n to the va r i ous
app l i ca t i ons i n scope .

originalsoftware.com

This guide has been brought to you by Original Software.
With the happiest customers in software testing, we've
been helping businesses meet their objectives and

deliver quality software through our range of innovative
code-free testing solutions for over 25 years.

